A software archit
high-availability

October 15, 2015

Hans Bossenbroek (hans.bossenbroek@Iluminis.eu)
René van Hees (rene.vanhees@nl.thalesgroup.com)

INAETICS

www.inaetics.org




The INAETICS mission

INtelligent robust ArchitecturE for Time Critical Systems

An open collaboration effort that aims to define and
demonstrate a dynamic service oriented reference
architecture that addresses the requirements of time
critical systems in a broad range of domains by providing
a single design and implementation space for all
subsystems, irrespective of control strategy.

Open innovation
a Other firm's

THALES aLtiander luminis @

UNIVERSITEIT TWENTE. Opensplice|DDS . RFEH% Y




Introducing INAETICS
Architectural principles
Architecture overview

Core Architectural Mechanisms

1. Component Service Model
2. Security Model

3. Coordination Model

Roadmap

. investing
in your future

European Regional Development Fund

Gog

Gelderland & Overijssel
Gebundelde Innovatiekracht

European Union

THALES

luminis @

Conversing worlds




The INAETICS domains

THALES luminis® -

onversing worlds a LL-i a nd er

Defense Personalized
MEG Learning

INAETICS Architecture

The realization is directly driven by the high-availability, deterministic and
geographically dispersed character
of the domains that are targeted by the INAETICS project




Software evolution?

Software is subject to change in the course of its existence

Lehman’s Laws of software evolution (1974 - )

E-systems (systems with real-world behavior):
e Continuing Change

 |ncreasing Complexity

e Fundamental Law of Program Evolution
e Conservation of Organizational Stability
e Conservation of Familiarity

Software evolution is not Darwinian, Lamarckian or Baldwinian,
but an important phenomenon on its own.




Architectural principles

Evolution must be designed into systems

How to design evolvability into complex, distributed systems?

e Software Modularity

 Dynamic Component-Services Architecture

e Dynamic application assembly and deployment
 Risk-adaptive security architecture

Applying compositional techniques with a design that is
ultimately controlled by a dynamic coordination strategy




The INAETICS layering

SOLUTION

SERVICE ORIENTED
ENVIRONMENT

Coordination
COORDINATION Monitoring

CONTAINER

Security

Remote
FABRIC Messaging

Discovery




Component — Service Model

SOLUTION
LEGENDA
System
@ Application
@ Module
@ Component
Component
e Coherence: Physical
* Network: Node-local




Component — Service Model

SOLUTION

LEGENDA
System

@ Application

@ Module

@ Component

Module
e Coherence: Functional / Security

e Network: Node-remote and zone-local

* Dynamism: Runtime, Semantic versioning




Component — Service Model

SOLUTION

LEGENDA
System

@ Application

@ Module

@ Component

Application

e Coherence: Declarative definition

e Network: Zone-remote

* Dynamism: Runtime (QoS) based resolution




Component — Service Model

SOLUTION

LEGENDA
System

@ Application

@ Module

@ Component

System
e Coherence: Constraint / deployment definition
* Network: Cross infrastructure

* Dynamism: Constraints-based coordination



Component — Service Model

SOLUTION

LEGENDA
System

@ Application

@ Module

@ Component

Solution
e Coherence: Intent definition
e Network: Infrastructure neutral

* Dynamism: Intent-based coordination



Security Model

Is based on:

* No introduction of new structural parts to
the Fabric layer

e A zone is the basic security concern

 Trusted connections and encrypted
communication across multiple zones can
only be attained at module level

e The is always a security manager
responsible for defining and enforcing

policies




Security Model

SOLUTION

LEGENDA

Zone

@ Application
. @ Module
; ® Component




Security Model

Includes:

e Attribute based encryption
e Short-lived trust relations
* Non centralized security management

to enable to dynamically reestablish trust-relations
and security perimeters using INAETICS
coordination, with a minimum of human
intervention.




Coordination Model

SOLUTION




Coordination Model

CHANGED FUNCTIONAL UPDATES SECURITY
BEHAVIOR THREATS/PERIMETERS

SOLUTION

ALTERED HARDWARE
CONSTRAINTS

ENDA
@ Coordination Alghorithm
@ Application
. @ Module
@ Component




The INAETICS roadmap

March, 2013 December, 2015

INAETICS Final (December, 2015)
e Prototypical coordination

* Demonstrable partner use cases




More INAETICS information

THALES
<EINRETICS INRETICS luminis @

Conversing worlds

Software Architecture The INAETICS architecture
evolution in an Open World Introducing INAETICS

Introducing the INAETICS project

e

o
)

% © —O
-2 = Yo

r '; e ﬂ % Processor &J
‘f 4 i3 INAETICS 1.1
* Component- and security model
. ' * Further design of the infrastructure
* Demonstrator with wiring, components and securit
‘. & g p Y

@ www.inaetics.org

(;-

&/ INAETICS




More INAETICS information

THALES

('f_.,lﬂHETIES Q.,IﬂﬂETlCS lu m l n|§ -
ONVersing worlas
Software Architecture The INAETICS architecture
Introducing INAETICS

evolution in an Open World

Introducing the INAETICS projec

e

o
)

) |
rUNE

i3 INAETICS 1.1

5]
) y =N D

(;-

* Component- and security model
* Further design of the infrastructure

* Demonstrator with wiring, components and security

i

DO R e i EEE

vondo u ¢
paKEsTY i

5 I wees EICIEER E BEEL
;l BERE el
‘g E REE
& E. ooE
:_!gg e ﬂ-m“..-.. =[] |
Eayg g
g Y5
£

woos
ALY

L
SO0
AAUEY




More INAETICS information

THALES
<EINRETICS INRETICS luminis @

Conversing worlds

Software Architecture The INAETICS architecture
evolution inan Open World PEroducing INA-TIGS

Introducing the INAETICS projec

e

rUNE}

i3 INAETICS 1.1

o
)

5]
) y =N D

(;-

* Component- and security model
* Further design of the infrastructure

* Demonstrator with wiring, components and security

11:30 — 12:00
How to implement a robust software architecture using

open source solutions

Jan Willen Janssen, Luminis & Germif Binnenmars, Thales
How do you build an architecture based on open source
components that is robust, scalable, secure and dynamic that
isn't outdated right away when put into production while still
being applicable for different use cases? The Inaetics project
will demonstrate how its architecture achieves this.




