

The INAETICS architecture
Introducing INAETICS

Authors:

Hans Bossenbroek

René van Hees

Page 2 of 25

Table of Contents

1 The INAETICS project .. 3

1.1 About this document .. 3

2 Dealing with change ... 4

2.1 Changing security ... 4

3 Architectural Principles .. 6

3.1 Software Modularity ... 6

3.2 Dynamic Component-Services Architecture... 6

3.3 Dynamic application assembly and deployment .. 7

3.4 Risk-adaptive security architecture .. 7

4 The INAETICS architecture .. 9

4.1 Overview ... 9

4.2 Core architectural mechanisms .. 10

4.2.1 The INAETICS component – services model ... 11

4.2.2 The INAETICS security model .. 12

4.2.3 The INAETICS coordination model .. 14

4.3 Architectural Use Cases .. 16

4.3.1 Coordination layer use cases .. 16

4.3.2 Container layer use cases ... 16

4.3.3 Fabric layer use cases ... 17

Appendix A: On service-oriented computing ... 19

Appendix B: On Intent-based design .. 23

Page 3 of 25

1 The INAETICS project

The goal of the INAETICS project aims to benefit from the changed economic opportunities of open

innovation approaches in the field of software systems that are defined by a set of high-availability

requirements. Within INAETICS, these requirements are translated into an architecture for

geographically dispersed systems with a time-critical (often real-time) aspect and dynamic security

demands. Because of the extensive character of the architecture and the open innovation strategy, the

success of the INAETICS project is not only defined by a fit-for-purpose architecture and

implementation, but much more in the form of a pre-competitive community that is motivated by a

common Open Innovation strategy.

The main purpose of any Open Innovation strategy is to share knowledge and experiences in a pre-

competitive setup with the purpose to gain a strategic advantage in terms of agility and time to market.

Any successful Open Innovation strategy starts with a shared vision and shared principles. For the

INAETICS architecture, the vision is based on the principles that evolution can be designed into a system

and that it is possible to drive the development of INAETICS-based systems using one overall

architecture style.

This architecture style, which is based on a dynamic services architecture, requires both a modular

development strategy as well as a rich and robust infrastructure to support a cost-effective

development process. The INAETICS project not only aims to deliver a fit-for-purpose architecture, but

also an initial implementation of the infrastructure and demonstrate the usability using a number of

domain-related examples. The core of this infrastructure will be made available as Open Source under

the Amdatu project
1
.

1.1 About this document

This document is written as part of the INAETICS research project. As such, it is part of a larger collection

of documents. Essentially, this document builds on the whitepaper “Software architecture in an open

world”
2
. In combination with this document, which introduces the INAETICS architecture, these two

documents offer a complete introduction into the goals and intended architecture of the INAETICS

project. By itself, this document aims to describe the INAETICS architecture by high-lighting the core

mechanisms and patterns; the actual, more detailed designs are described in specific documents that

are either mechanism or subsystem specific.

1
 Amdatu is an Open Source project aimed at fostering Open Innovation initiatives. See also: http://www.amdatu.org/philosophy.html.

2
 The whitepaper is available for download at http://www.inaetics.org.

Page 4 of 25

2 Dealing with change

One of the biggest challenges driving the INAETICS architecture, apart from the collaborative aspect that

is dictated by the Open Innovation strategy, is how to design evolvability into complex, distributed

systems. The INAETICS project intends to address this challenge by rigorously applying compositional

techniques with a design that is ultimately controlled by a dynamic coordination strategy.

Within INAETICS, the compositional techniques are realized using a dynamic component-services

architecture-style. This is elaborated further in paragraphs 3.1 and 3.2. The actual realization is directly

driven by the high-availability, deterministic and geographically dispersed character of the domains that

are targeted by the INAETICS project.

Conceptually, the INAETICS architecture acknowledges 2 levels of behavior:

• Behavior and demands of the problem space: i.e. In order to be able to coordinate intelligently

how a solution reacts to changing constraints or requirements, it is imperative to specify the

desired behavior in terms that are not contaminated by elements of the solution space. This

approach is called ‘intent-based
3
 modeling’, a strategy that finds its roots in the design of large,

complex networks where it is impossible to oversee all hardware and functional invariants.

• Behavior and qualities of the solution space: i.e. given a set of designed and implemented

software services, configurations and hardware platforms, a solution space has been defined

that is limited by a number of constraints or qualities. In general, the dynamics of this solution

space is rooted in the granularity and dynamic capabilities of the contained applications,

modules and components and their configurations.

These 2 levels of behavior are addressed separately to achieve the desired level of controlled

evolvability. In the problem space the INAETICS architecture uses a coordination-based approach that is

described in paragraph 4.2.3 (The INAETICS coordination model) of the architecture description. The

evolvability aspect of the solution space is an integral part of the software architecture, but is largely

based on a mechanism where the dynamics of a solution are made explicit in terms of capabilities,

requirements and context of individual parts of a system.

2.1 Changing security

The evolvability aspect of the INAETICS architecture is not only aimed handling changed functional

requirements or resource constraints, but also the ability handle changed security parameters.

Currently, the majority of IT systems feature a rigid and centralized approach to security. Their security

design, if any, is based on the notion of a single and usually rigid ‘security perimeter’ that is guarded

using security policies that are managed from a centralized location. This approach has 2 major

drawbacks. In the first place, recent history has shown that the security that systems have to deal with

are changing rapidly, both in frequency as well as intelligence and intent. Furthermore, with the

3
 A more in-depth description of Intent-based design can be found in Appendix B.

Page 5 of 25

increased number of connected devices of IoT deployments
4
 it is becoming obvious that centralized

approaches to security-management have proven not to scale sufficiently.

For these reasons, the INAETICS architecture also includes the evolution of security models and related

mechanisms. Using a combination of attribute-based encryption, short-lived trust relations and non-

centralized security-management, it is possible to dynamically reestablish trust-relations and security

perimeters with a minimum of human intervention.

4
 According to Gartner it will scale to 26 billion devices in 2020 (see http://www.gartner.com/newsroom/id/2636073).

Page 6 of 25

3 Architectural Principles

This chapter aims to capture the design philosophy of the INAETICS Architecture in the form of a set of

principles. The principles of the INAETICS architecture extend beyond the principles of a software

architecture that tend to have a qualitative character. Examples of architecture principles with an

accepted, yet qualitative character are:

• The system should be built to change instead of building to last.

• The architecture should be modeled in order to analyze and reduce risk.

• Models and their visualizations should be used as communication and collaboration tooling.

• The key engineering decisions should be identified and acted upon upfront.

For INAETICS, these core principles aim to define a specific design and implementation space. This space

dictates that it is possible to base any solution in the INAETICS target domains on a collection of one or

more components or systems that can only inter-operate through defined services. The principles

required to define that space as well as the inherent dynamics are described in the next paragraphs.

3.1 Software Modularity

The most fundamental principle of the INAETICS architecture is to apply the software modularity

paradigm on every level of abstraction or development phase. The concept of software modularity is

described by Edsger Dijkstra in the early 70’s
5
 and is to date one of the few patterns to conceptualize

complex systems. The software modularity paradigm dictates that every system can be seen as a

cohesive set of software parts
6
 during every lifecycle of the development. By identifying and relating

these parts during every phase of the lifecycle of a system, it is possible to achieve new levels of

evolvability.

Essential in designing and implementing software using a modular approach is to rigorously apply the

principle of "Low Coupling and High Cohesion”. High Cohesion means that parts that can be grouped

together into modules whenever their functionality is strongly related, whereas “Low Coupling” means

that these modules should be dependent on each other to the least extent practically possible. These

two principles are best implemented using a dynamic component-services architecture style.

3.2 Dynamic Component-Services Architecture

An architectural style that inherently supports the modularity paradigm is a dynamic component-service

architecture. According to this style, any system can be partitioned into components that publish their

functionality through services. These components can only interact with other components using these

services. And because collaborations of services are defined to be inherently dynamic, it is possible to

facilitate run-time evolution.

5
 This was described in EWD300 (for a transcript in Dutch see http://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD300.html).

6
 For the sake of clarity, we use the term ‘software part’ and not modules or components to refer to any well-defined part of a system. These

terms are part of a defined nomenclature which is described in paragraph 4.2.1.

Page 7 of 25

The INAETICS architecture provides systems with an infrastructure that provides a level of indirection

whereby systems can control the visibility and accessibility of services and, if applicable, extend services

with remote capabilities. As a result, INAETICS systems can be partitioned into a set of components and

services in a controlled way, without cluttering the implementation space with all kinds of partitioning

details. Beyond the boundaries of a single system, larger solutions can be based on so called systems of

systems
7
, which are largely based on the same partitioning and coordination mechanisms.

3.3 Dynamic application assembly and deployment

In order to be able to handle large sets of components and the dynamics of services the INAETICS

architecture supports the capability to dynamically assemble and deploy systems. Assembly and

deployment of systems is based on compositions. The structure and dynamics of these compositions can

be expressed through abstract capabilities and requirements. This makes it possible to specify how

systems should be deployed, allocated and wired optimally given the current state, capabilities and

availability of resources.

For this purpose, the INAETICS Architecture features a Domain Specific Language (or DSL) that enables

architects to express the level of dynamism in the service dependency resolution process. This service-

dependency DSL is largely based on a Requirements-Capabilities approach that can express how services

relate
8
. Essentially, it assumes any required service can be matched against a collection of providers

with capabilities, which may in turn have transitive requirements, and defines a resolution mechanism.

3.4 Risk-adaptive security architecture

The systems that are developed using the INAETICS architecture are expected to use (parts of) the public

Internet. The continued growth and ubiquitous character of the Internet have made people aware of the

need for increased security. Protection of valuable information assets and digitally controlled physical

assets is a critical issue for everyone. The job of securing services, platforms, and networks from

malicious users and software is a difficult one. The security dimension of the INAETICS architecture

manifests itself on various levels. In the first place, all software conforms to the ‘secure by design’

philosophy
9
, meaning that security is taken into account at all times, based on the assumption that

malicious attempts will take place. But above all in order to facilitate the dynamic runtime behavior, the

underlying infrastructure must support facilities to establish trust between services and enforce various

levels of encryption whilst maintaining an acceptable level of overhead and pervasiveness.

7
 See also https://en.wikipedia.org/wiki/System_of_systems.

8
 A comparable mechanism is the Declarative Services specification that was introduced in release 5 of the OSGi standard. See also

http://wiki.osgi.org/wiki/Declarative_Services.
9
 Secure by design means that the software has been designed from the ground up to be secure. Malicious practices are taken for granted and

care is taken to minimize impact when a security vulnerability is discovered. See also: http://en.wikipedia.org/wiki/Securebydesign

Page 8 of 25

To this end, it is assumed that the dynamic aspect behavior of INAETICS systems also stretches across

the boundary of security by enabling the use of variable security perimeters and threat-dependent

security levels.

Page 9 of 25

4 The INAETICS architecture

The INAETICS architecture is geared towards organizations that have a software-intensive strategy and

have access to dedicated software R&D departments. For this reason, the INAETICS architecture is

designed to strike a balance between team-productivity and versatility. This balance is implemented by

offering a consistent design and implementation space in combination with a rich infrastructure that

hides complexity and distracting technical details.

4.1 Overview

The design and implementation space of INAETICS systems is based on a dynamic component-services

architecture (see also paragraph 3.2). This means that any INAETICS solution can be composed of a

dynamic set of systems and applications (see also paragraph 4.2.1). Each of these applications:

• Can be modeled as a dynamic set of services.

• Which are implemented by a cohesive set of modules and components, where:

o Any component can only be accessed through one of its defined services.

o Each component is self-contained, and does not depend on the context or state of other

services.

o The assembly of the modules and components, the application, can vary at runtime.

Because of the challenges that are inherent to the target domains of the INAETICS project, it is

complicated to oversee, implement or deploy this architecture without subdividing the architecture.

Therefore, in order to retain a manageable architecture, the INAETICS architecture is split-up into a

number of layers:

• The Coordination Layer - The top layer contains the services and mechanisms capable of

controlling the dynamic capabilities of INAETICS solutions. Ultimately, one of the goals of the

INAETICS architecture is to dynamically resolve changes in the context of a solution. This

capability is based on a coordination strategy, which is contained in this layer.

• The Container Layer - The middle layer of the INAETICS architecture implements an

environment that isolates applications from each other and the underlying infrastructure while

providing an added layer of protection for the application itself. In services architectures, this

environment is usually referred to as a container. Containers control the lifecycle, context and

isolation of applications and its components and services.

• The Fabric Layer - The bottom layer contains the services and mechanisms that abstract from

the underlying networking, storage and computing infrastructure. Effectively these services and

mechanisms are based on the notion of fabric computing
10

.

These logical layers are illustrated in the following diagram:

10

 See also: http://en.wikipedia.org/wiki/Fabriccomputing.

Page 10 of 25

Figure 1: An overview of the architectural layers.

The figure above shows a graphical representation of the layers in the INAETICS architecture as well as a

number of typical supporting features that can be found in a Service Oriented programming

environment. A number of these typical features are described in Appendix A. Any INAETICS solution

lives on top of computer resources which are represented using a secure fabric computing abstraction.

On top of the Fabric layer, the application lifecycle is managed in the container layer. The container

layer leverages the capabilities of the fabric layer and implements context services, install services and

the underlying fabric layer services in order to support the lifecycle of applications and related

components and services. The actual evolvability of a solution is controlled by services in the

coordination layer. These services use the information that is exposed by the other layers to define a

dynamic set of coordination algorithms to handle complex changes in the environment.

Using the three layers introduced above, the actual architecture will be described by highlighting the

core mechanisms, followed by the architectural use cases. Each of the core mechanisms as well as a

number of prototypical deployments of the INAETICS architecture are described in more detail in

separate, yet related documents.

4.2 Core architectural mechanisms

The INAETICS architecture is based on a limited number of core mechanisms: an applied form of a

dynamic component/services architecture, a dynamic security architecture and a specific approach to

coordination. Each of these mechanisms will be described in the next paragraphs.

Page 11 of 25

4.2.1 The INAETICS component – services model

INAETICS is defined as a architecture for software intensive solutions. As such, it defines any INAETICS

solution as a collection of software parts with a specific nomenclature and ordering that is defined in the

INAETICS component – services model. The software parts identified in this component – services model

are designed to support solutions in the target domains using a compositional approach. Each of these

types of software parts is illustrated in the next figure and will be described in the rest of this paragraph.

Figure 2: An overview of the INAETICS component nomenclature.

Conceptually, solutions Solutions, or solution definitions to be more specifically, are at the top of the

component-services nomenclature of the INAETICS architecture. In the INAETICS architecture, solutions

are defined using an intent-based model that is described using a INAETICS specific DSL
11

. This part of

the INAETICS DSL contains a domain-specific aspect as well as behavior oriented aspect in the form of

intent definitions.

Solutions in turn are composed out of one or more systems. Systems are defined using a constraint-

based model that is described using another part of the INAETICS specific DSL. This part of the INAETICS

DSL can express a variability or performance and other qualitative aspects to describe the boundaries of

operation and an assembly aspect.

11

 DSL is an abbreviation for Domain Specific Language. (see also 3.3 Dynamic application assembly and deployment).

Page 12 of 25

The third type of software part is the application. Applications are defined as one or more software

programs that are related because of their identical scope or specifications. This scope is usually

characterized by either a defined set of end-user roles or features that are related because of their

strongly related place-time-feature aspect. Any INAETICS system can consist of one or more

applications, where an application is based on a declarative
12

 model that describes the logic and

boundaries of an application, without describing the control flow over the applications. This declarative

model is also part of the INAETICS specific DSL.

The declarative specification of an INAETICS application needs to be mapped on the underlying

infrastructure using the models and capabilities of the Fabric layer. This is done, in decreasing order of

size and complexity, using Modules and Components. Modules are software parts that are security and

network aware and can communicate over zone-boundaries. As such they are based on a functional and

logical viewpoint on security and units of networking offered by the services in the fabric layer.

Components are the basic building blocks of the INAETICS architecture and contain all the functionality.

As an overview and reference the following table, which lists the nomenclature of the software parts in

the INAETICS architecture, is provided.

Software part Coherence Network Dynamism

Solution Intent definition Infrastructure neutral Intent-based coordination

System Constraint/deployment

definition

Cross infrastructure Constraint-based coordination

Application Declarative definition Zone-remote Runtime (QoS) based

resolution

Module Functional / Security Node-Remote and

zone-local

Runtime, semantic versioning

Component Physical Node-local Code-time

Table 1: The nomenclature of the software parts of the INAETICS architecture.

4.2.2 The INAETICS security model

The security model of the INAETICS architecture is based on a number of core mechanisms. These

mechanisms are integrated in such a way, that it is possible to design a security strategy that meet the

demands of the INAETICS target domains as well as the security risks that are inherently related to

distributed and geographically dispersed systems.

Although security definitions in INAETICS are dynamic, they are built up from individual and discrete

elements. Depending on the granularity of the implementation of these elements, it is possible to design

12

 More on declarative programming can be found at: http://en.wikipedia.org/wiki/Declarative_programming

Page 13 of 25

a security model that is sufficiently fine-grained to counter the types of threats that have been

identified.

The elements of the INAETICS security model are based on the following starting points:

1. The design does not introduce new structural parts to the INAETICS fabric layer. Much more it

aims to decorate the software architecture in such a way that dynamic security enforcement can

be achieved without cluttering the actual implementation space with undesired details.

2. A zone is defined as the basic security concern
13

. That means that any software part that is

considered to be a member within that zone can participate in secure communications within

that zone.

3. Trusted connections and encrypted communication across multiple zones can only be attained

at module level and not by individual components. For this purpose, each module features one

or more components that are decorated with the appropriate security features. Any module can

operate as a bridge between 2 disparate security zones as well as within a zone between 2

applications.

4. There is always a Security Manager, or set of Security Managers, that is responsible for defining

and enforcing policies that can be used to establish trusted relations and encryption schemes.

Consequently, this can be illustrated using the following diagram:

Figure 3: A logical overview of the security model.

13

 Therefore, there is always at least one zone: a default zone with a default security model.

Page 14 of 25

In this example there are 2 zones, each containing two disparate applications with multiple modules;

each module containing a number of components. Trusted and secure communication is only allowed at

module level and is depicted using the arrows. In general, security and trust of communication is

controlled by the INAETICS Security Manager. Suppose that in this example the Security Managers have

the following policies:

1. Zone A and Zone B have a trusted relation;

2. Component C1.1 is able to securely communicate with Component C2.1;

3. Component C2.1 is able to securely communicate with Component C4.1;

4. Component C3.1 is able to securely communicate with Component C5.1.

Components C6.1 is neither accessible from the outside nor able to communicate beyond its module

boundaries.

Every zone has a Security Manager that is local for that zone. This Security Manager has knowledge

about the modules that exist in a zone and that are capable of maintaining a trust relation in terms of

authorized access and encryption with other modules. Note that in this approach in order to be able to

establish a communication channel between modules, applications or systems they need to use the

Security Manager.

Whenever communication between multiple zones is required, a related number of security managers

will be involved. However, because the Security Model was designed to be one security space divided

into multiple zones, there is no designated single master in the security space. A mechanism of leader

election and automatic discovery are the basic mechanisms for establishing this security space with

multiple Security Managers.

4.2.3 The INAETICS coordination model

Given the dynamic capabilities of the INAETICS architecture, it is possible to design the runtime behavior

of any INAETICS based solution. This is done using a number of coordination algorithms that can be

adapted depending on the target domain. The INAETICS architecture aims to facilitate evolvability to

support changed functional requirements, altered hardware capabilities or updated security threats or

perimeters. Therefore, the most important lifecycle states of any INAETICS solution can be illustrated

using the following diagram:

Figure 4: The various states of the lifecycle of an INAETICS solution..

Page 15 of 25

As described in chapter 2 “Dealing with change”, change in the INAETICS architecture is split across to

different spaces: a Problem Space and a Solution Space. Each of these spaces supports a specific form of

control over variability. The Problem Space features ‘Intent-based coordination algorithms” and the

Solution Space features “constraint-based coordination algorithms”. Conceptually, these types of

control over variability differ from each other in the type and timing of the control they have over

evolvability. They are, however, implemented and deployed as distributed processes without centralized

coordination or state, which ensures they are as scalable and reliable as the coordination-space they

control.

Intent-based coordination algorithms are designed using one or more intent models of a solution, that

can consist of a system or even a systems of systems. These algorithms integrate these intent models

into one coordination space, enabling them to optimize the behavior of the related solution space to

best meet the given demands. Thereby, these algorithms directly control the degrees of freedom of the

solution space. Ultimately, these algorithms are controlled by either human users or decision-oriented

actors.

Constraint-based coordination algorithms on the other hand control the evolution of the solution space.

They are implemented to optimize a defined set of constraints given information they receive and

collect from their environment. These algorithms are implemented in the INAETICS architecture as a

single coordination space per system or application. Architecturally this type of coordination algorithms

implements all mechanisms that are required to handle changed constraints such as resource

parameters of a system. These changes all manifest themselves through software services. Therefore,

the algorithms are based on the information that is published by these software services, independent

of the type of abstraction they represent.

Figure 5: An overview of the coordination model.

Page 16 of 25

4.3 Architectural Use Cases

The functionality that is typical of the INAETICS architecture can be grouped using the main architectural

layers that were introduced earlier in this document: Coordination layer use cases, Container layer use

cases and Fabric layer use cases.

4.3.1 Coordination layer use cases

The use cases of the the coordination layer that are relevant for the architecture are:

1. Coordinate changes in a system and related aspects that are caused by changes in constraints.

This use case denotes the functionality that is specific to adaptability in the solution domain.

2. Coordinate changes in functional behavior that are caused by events that are not aligned with

the governing Intent-model. This use case identifies the behavior that is relevant to (re)align a

solution with the governing intent-model.

3. Coordinate changes in security policies or attributes (i.e. the security model). For example, after

a security threat was detected somewhere in the system the security model can be adapted to

prevent the threat from harming the system and simultaneously isolate it with minimum

degraded performance.

4.3.2 Container layer use cases

The Container Layer of the INAETICS architecture implements the mechanisms required to control the

lifecycle, context and isolation of applications and the associated components and services
14

. From that

perspective, the container layer use cases that are relevant for the architecture are:

1. Deploy and manage a software part (see paragraph 4.2.1 for a typology of software parts).

Given an appropriate security environment, it is possible to dynamically add or otherwise

manage the lifecycle of (parts of) software. This can either be done manually or by one of the

automated mechanisms such as dependency management
15

 or executed deployment

descriptors.

2. Manage characteristics of software parts.

The capability of INAETICS solutions to dynamically adapt to changing environments and

demands is based on coordination algorithms (this is based on a Qualities of Service mechanism

–QoS-). Each software part has characteristics that describe something about its behavior or

operation. Given the correct security definition, it is possible to change the behavior of any

software part. This can be done by external actors as well as the software part itself.

3. Register and provide service.

Services, which expose specific functionality that is implemented by a component, must be

registered before they can be consumed. In this use case a service abstracts from

14

 Because of the composition approach in INAETICS, a strict hierarchy of nomenclature is defined to identify parts of a system. This terminology

is further described in paragraph 4.2.1 The INAETICS component – services model.
15

 For a more detailed description refer to: http://www.osgi.org/wiki/uploads/Links/AutoManageServiceDependencies_byMOffermans.pdf

Page 17 of 25

implementation details like networked versus local or synchronous versus asynchronous

invocation.

4. Consume service.

After a service has been retrieved, it must be possible to use (or consume) it. Like the previous

use case, this use case is independent on the underlying implementation details.

5. Control service visibility.

Finally, in order to control the use and visibility of services, it is possible to decorate any service

registration with extra or changed attributes or security information. Using this mechanism, it is

possible to actively control the evolvability of any service.

4.3.3 Fabric layer use cases

The Fabric Layer is a system of loosely coupled processing nodes which collaborate to provide a robust

and highly dynamic distributed services infrastructure that can span organizational, technical and

geographical boundaries.

The fabric layer is composed of:

1. Nodes, offering computing power and elementary actors in the fabric. Nodes are the first level

of abstraction away from the physical device. It should be noted though, that one physical

device can host multiple nodes.

2. Wires, implementing communication channels between nodes. Wires can express both the type

of communication (e.g. synchronous and asynchronous) as well as addressing and other

topology details.

3. Clusters, a number of processing nodes that are grouped in a bounded context. This context is

based on various forms of computing affinity, e.g. in order to minimize networking or a shared

security definition.

4. Zones, a group of nodes, either or not organized in clusters, with a certain scope. For example,

services running with one zone are all within the same security zone.

So, ultimately the fabric consists out of a set of one or more zones which are able to interact in a secure

fashion and respond dynamically to either functional, physical and security constraints.

The architecturally relevant use cases for the fabric of INAETICS solutions deal with managing nodes,

clusters and zones. The basic capability that is implemented at this level of the architecture is to be able

dynamically adapt to changing environments in a controlled way. The use cases are:

1. Manage nodes. It is possible to dynamically add, remove or otherwise manage nodes in the

INAETICS architecture.

2. Manage wires. Managing interconnections between nodes is done using wires. Apart from

administering the lifecycle of wires, it is also possible to manage their configuration.

3. Manage Clusters. It is possible to dynamically add, remove or otherwise manage clusters or

nodes of clusters in the INAETICS architecture.

4. Manage Zones;

Page 18 of 25

a. It is possible to dynamically add, remove or otherwise manage zones in the INAETICS

architecture.

b. Clusters can be dynamically added and removed to zones. Either manually or

automated.

c. Control security definition; security definitions in the INAETICS architecture can be

changed dynamically (see also paragraph 3.4).

Page 19 of 25

Appendix A: On service-oriented computing

The INAETICS architecture is designed for developing solutions using the Service-Oriented programming

paradigm. To use this paradigm efficiently, a rich programming and runtime environment is required.

This appendix elaborates on this environment by high-lighting a number of the most important services.

The following figure shows high-level, hierarchical view of these services and their relations:

Figure 6: An overview of the structure of a Service Oriented Environment.

Container Services
One of the key components of a service-oriented programming environment are the Container Services.

Within the INAETICS architecture, the container Services have access to processing and networking

resources using a fabric computing based abstraction. A Container Service provides for isolation of

applications and components as well as lifecycle management: starting / stopping component execution

and restarting failed components. Other lifecycle features include starting components on system boot,

live component updates, persisting component state, and moving components between containers.

Component restarts or updates can be hot, warm, or cold. Starting the new component and switching all

resources associated with the old component to the new component without interruption accomplish

hot updates. Warm updates are accomplished by notifying the old component’s resources to associate

with the new component that has started. Cold updates are accomplished by stopping the old

component, then starting a new one. Component mobility is the key enabler for balancing the

processing load over a cluster of Container Services on different machines. It also facilitates agent

Page 20 of 25

frameworks where a component can initiate a move to a different platform. Pausing its execution,

capturing its state, transmitting the state to another container and restarting it makes it possible to

move a component. Capturing the state of a component can be a complex task, involving internal state

such as threads, or external state such as services being used and open files. Connections to other

components must be terminated and renegotiated; files must be closed and reopened.

Clustering of Container Services facilitates load balancing and fault recovery. Container Services in a

cluster cooperate to optimize the loading and performance of each, moving components as needed or

even starting new component instances to ease the load on a heavily used component.

Furthermore, a Container Service can add or remove processing resources from a task or set of tasks. All

of these load balancing and fault recovery features are based on system status and performance

information that is provided by the underlying infrastructure.

Install services
In order to be able to support the runtime deployment of components from the ground up, a service-

oriented environment should feature an Install Service with that capability. The concept of an Install

Service inverts the normal installation paradigm. Typical install programs are bundled with the program

being installed. As a result, these installers have to ask a series of questions about the platform they are

installing the application on. This also poses a security risk in that unauthenticated software is allowed

to run on the system unchecked.

The INAETICS Install Service or a dedicated part of it runs all the time. The Install Service interacts with

the underlying infrastructure and can detect installation files or other events to initialize installation

sequences. In this approach, the user does not need to be queried for platform details and the security

signature can be validated before anything ever run on the platform. The Install Service can also resolve

context-related attributes through a process of policy resolution. This resolution process allows for

customization of the deployment environment of a component. The Install Service can act as a proxy to

make components available to other platforms. The Install Service allows the registration of listeners for

installation events. This allows the Container Services to instantly run applications after they are

installed, if desired.

Component Services
Another aspect of a service-oriented programming environment is the family of Component Services.

Component Services provide a Service-Oriented Programming (SOP) abstraction for service discovery

and lookup. Within the INAETICS architecture, each self-contained unit of functionality can be treated

separately. Component Services abstract from the details of discovery and lookup so that these

components can easily communicate, whether they are in the same Local Area Network (LAN),

connected by a Wide Area Network (WAN) or even running in the same process. Component developers

are only concerned with a small set of standardized operations. For synchronous services this means

providing and using services, removing a provided service, and discarding a used service. For

Page 21 of 25

asynchronous services this means publishing and subscribing to services, unsubscribing a service and

unpublishing a service.

Context Services
The INAETICS architecture is designed for the development of systems of systems. Therefore, it must be

possible to dynamically (re)deploy components and services of the system to other parts of the system.

This notion is captured in the term of a “deployment context”. A context is designed to remove

environmental details from components and thereby make it possible to deploy them in any

environment.

As such, the use of context and a Context Service to manage them is an illustration of the metaphor of

the wormhole, which was introduced as part of the underlying meta-model. Take for example a system

that consists of 2 disparate technology environments: a deterministic and an on-line environment. Given

the mechanism of the contexts it is possible to (re)deploy components of the system between

environments that historically have a different design and implementation space. In the metaphor this is

illustrated by the wormhole in the model: one doesn’t have to re-implement components in order to be

able to be used in a different environment.

Context Services are designed to provide an environment for Service-Oriented programming. Effectively,

context services make it possible to control the lifecycle of contexts, configure their basic behavior; in

terms of for example security and discovery mechanisms and link them by defining trusted relations

between contexts.

When a context has not yet been created, components will reside in a default context. The default

context provides a Service-Oriented environment for an isolated platform. Every system that is based on

the INAETICS architecture will have a default context that contains a minimal number of services: a

runtime platform with the core services mentioned earlier and an install service (or at least a local agent

that can connect to an install service).

Coordination Services
The INAETICS architecture is designed to encompass different computing environments. Fundamentally,

these environments differ in the way they view time and their strategies to work within the limits of the

timing requirements. The INAETICS architecture was designed to be agnostic of time related strategies

by introducing coordination services that enable dynamic change in scheduling and coordination

policies.

An important part of coordination is based on Scheduling Services. Scheduling services define the level

of granularity for the arbitration of computing resources. Scheduling policies dictate how much CPU

time is allocated to tasks. The goal of any scheduling policy is to fulfill a number of criteria:

No task must be starved of resources - all tasks must get their chance at CPU time;

If using priorities, a low-priority task must not hold up a high-priority task;

Page 22 of 25

The scheduler must scale well with a growing number of tasks, ideally being O(1)
16

. This has been done,

for example, in the Linux kernel.

Security Services
The security aspect of the INAETICS architecture is based on two major mechanisms: A security and

policy manager on one hand and various levels of attribute-based access control on the other.

The INAETICS security manager is a trust policy-based service that can create and maintain "fuzzy" trust

relations between users and systems using a control mechanism that is based on policies and a number

of (external) inputs. In this, inputs can be anything that can be used to determine the authenticity and

trustworthiness of a system or user. Examples of such inputs are: credentials (username/password),

personal tokens, certificates, and so on.

If we combine this service and the way it enforces trust with additional information in the form of

attributes, such as, GPS locations, (cyber-security) threat-levels, and so on, it is possible to enforce more

fine-grained decisions whether or not a system or user can be trusted and therefore can perform certain

actions or access certain parts of the system.

16

 An O(1) scheduler is a kernel scheduling design that schedules using constant amounts of time, regardless of how many processes are

running. See also: http://en.wikipedia.org/wiki/O(1)scheduler

Page 23 of 25

Appendix B: On Intent-based design

Applying compositional technologies to develop large-scale systems brings all kinds of new levels of

freedom and agility to these systems. However, these levels of freedom need to be designed and

manageable. In order to solve this problem, numerous organizations have begun to experiment with a

new type of solution definition that is based on capturing the intent of a solution as opposed to defining

the exact implementation details of the solution itself. These intents can than be used as a basis to infer

coordination strategies which in turn control the dynamics of a solution
17

.

A successful application of Intent-based models finds its use in Software Defined Networks (–or SDN–).

Here SDN Controllers determine how to translate the Intent the of network design into an

infrastructure-specific “prescription” that causes the network to behave in the desired manner
18

.

Metaphorically, an intent-based model can be explained as follows:

When you hire somebody to cut your lawn, you don’t give them a list of all the blades of grass in your

yard and the length to cut each one to (prescription), you tell them to make it look nice (intent) and they

figure out the rest. Intent-based networking emphasizes the “cut my lawn” interface and is designed to

move away from the “industry-standard CLI” model which is the “each blade of grass”, traditional

approach. Once the description of what is needed is separated from the details of how it’s

implemented, there are many benefits as described below.

Intent is invariant
Intent doesn’t change as a result if (part of) a solution fails because of a crashing server, changing cloud

provider, switch vendors, upgrading firmware or any other change to the underlying infrastructure. This

invariant description frees solutions definitions from the underlying implementation details, simplifying

overall development, testing, and deployment. If the expression has to change based on the state of the

infrastructure, you have not yet captured the essential intent, which is infrastructure agnostic by design.

Intent is portable
Intent (describing the needs of the solution) is not specific to protocols, vendors, media-types or other

implementation details. Because it is abstracted from changes to these details, intent-based modelling

eliminates the impact of such changes.

With respect to the design of SDN’s, intent-based modeling allows what enterprises, service providers

and telecom carriers have been seeking; portability across a range of dissimilar solutions including the

SDN controllers, eliminating lengthy applications integration changes and run-time complexity as a

result of inevitable changes to the infrastructure.

17

 An example of applying intent models in network virtualization can be found at: http://researcher.ibm.com/researcher/files/zurich-DCR/An

Intent-based Approach for Network Virtualization.pdf
18

 The text in this appendix is an adaptation of an article by SdxCentral about Intent-based network design. It can be found at:

https://www.sdxcentral.com/articles/contributed/network-intent-summit-perspective-david-lenrow/2015/02/

Page 24 of 25

Intent is compose-able
Intent-based approaches can be seen as a logical extension for the compositional strategy described in

chapter 2. The extensible character of an intent-based model is designed to allow disparate services,

developed independently, to express their resource requirements in a common language. As a result, all

of the services accessible via the intent-driven interfaces share a common coordination strategy.

By sharing this coordination strategy, it is possible to design a solution for “split brain” and “multiple

writer” challenges in distributed systems design. Any combination of intent-driven services can be used

concurrently. In current SDN systems, one can run a third-party QoS service or a third-party security

service, but not both. Building intent-driven systems provides a way to alleviate this problem by

requiring that new services be built using the intent interface. Operators will be able to choose a la carte

services to offer from multiple independent software developers with minimal risk to system integrity.

Intent scales out, not up
The intent of a solution doesn’t change when you go from one infrastructure provider to another one.

You can take a single description of intent and hand it to all of them. This enables a scale-out approach

to designing, for example, solutions that span multiple domains simultaneously supporting small failure

and maintenance domains concurrent with massive overall scale. Currently, many architectures assume

building a scale-up system using a single, massive, clustered domain, which creates several operational

and deployment challenges. By effectively sharding the collective intent across an arbitrary number of

independent domains, we get end-to-end intent fulfillment with the superior survivability and fault

handling of locally autonomous controllers.

Intent provides context
When different services of a solution expose low-level dynamics, there is always a risk of conflicting

changes to the system state. Attempts to examine these dynamics and resolve such issues can prove to

be unsuccessful because, at the level of abstraction of the individual service, it is impossible to decode

the overall intent of the services exposing the dynamics. Because any intent-based model is designed to

convey the why, rather than the how, it is possible to determine actual or apparent conflicts and seek

ways to fulfill cumulative intents.

Promising research in the area of intent-based conflict resolution in multi-service SDN systems is being

considered in standardization activities in the ONF
19

.

We expect to see significant progress and easier-to-use, more capable solutions as a result of the intent-

based work. Many groups working independently are now beginning to work together in standards

organizations and open-source communities to create common intent-based approaches.

19

 ONF Stands for “The Open Network Foundation”. See also https://www.opennetworking.org/.

Page 25 of 25

About the authors

Hans Bossenbroek (1962), CEO of Luminis.

Hans has worked for various IT consulting organizations before he co-founded Luminis in 2002. He has a

rich technology background and is widely acknowledged as a thought leader in the area of IT

architecture; he is a regular speaker at international conferences and has been a member of the Dutch

Java User’s Group board of directors for several years. Prior to founding Luminis, Hans worked for

various companies amongst others ATOS.

René van Hees (1965), Chief Software Architect at Thales Netherlands.

René has worked for several software companies in both the Netherlands and Germany before he

started at Thales Netherlands in 2002. In his role of Chief Software Architect, he is responsible for all

technological, process, methodology, architectural and innovation related aspects concerning the

development of (real time embedded) radar sensor software.

About INAETICS

For the INAETICS architecture, the vision is based on the principles that evolution can be designed into a

system and that it is possible to drive the development of INAETICS-based systems using one overall

architecture style. This architecture style, which is based on a dynamic services architecture, requires

both a modular development strategy as well as a rich and robust infrastructure to support a cost-

effective development process. The INAETICS project not only aims to deliver a fit-for-purpose

architecture, but also an initial implementation of the infrastructure and demonstrate the usability using

a number of domain-related examples.

The INAETICS project is a collaboration between a number of organizations, based on the principles of

Open Innovation. The INAETICS partners collaborate and share their expertise in order to realize a

shared vision of an open and robust architecture for the next generation of time critical systems.

INAETICS is publicly funded by the European Union and the government of The Netherlands.

More information can be found on www.inaetics.org

