
1.

2.
3.

Installation and setup guide
version 1.1, last modified: 2015-05-13

This document explains how to set up the INAETICS demonstrator. For this, we use a Vagrant-based setup that boots a cluster of up to five
nodes on a single machine, and with the help of a couple of shell scripts we show how you can create evolvable systems using Docker and OSGi.
This document is structured as follows: first some background information about the demonstrator application itself is given after which the
preparations and startup of the cluster is described. In the last section, the demonstration scenarios are described showing the dynamic aspects
of the demonstrator application.

Demonstrator overview
Vagrant-based installation

Tested configuration
Prerequisites
Starting the bootstrap VM
Building the Docker images
Starting the compute resources

The INAETICS demonstrator
Starting the demonstrator application
Scaling out the demonstrator
Handling fail-over and dynamic reconfiguration

Known issues
Summary

Demonstrator overview
An INAETICS system is about creating systems that can evolve in and over time. To demonstrate the scalability aspects of an INAETICS system,
this demonstrator provides a sample application as denoted in the following figure:

At the utmost left, we have a number of data , which publish data onto a shared . Assuming the data needs a bit of processing,producers queue
one or more picks up the data from the queue, processes it and stores the result in a single . Users can use the data fromprocessors data store
this store for reporting purposes. With these four aspects of our application, we can demonstrate the following scenarios which affect
the equilibrium of the system:

if the producers publish data than the processors can handle, in which case the queue-size will grow. In this case, we need tomore scale
 by adding more processors;out

suppose a processor fails and stops functioning, we need to handle to another processor;fail-over
in case hardware resources fail, we can dynamically reconfigure the parts across different resources.

The various parts of the application are written in both C and Java that together form a distributed application that shows the ability of how a
polyglot environment can scale and handle fail-over scenarios. Each part is deployed onto one or more computing resources (virtualised Linux
environments) using Apache ACE as provisioning solution and uses Fleet for the (minimalistic) scheduling and monitoring.

In the following section, the preparations and installations of the prerequisites are explained in more detail.

Vagrant-based installation
In this section, the installation of the INAETICS demonstrator is described using Vagrant. You can use it to install the INAETICS demonstrator on
a single machine. This section uses CentOS-7 as host platform. Nevertheless, the installation can rather easily be ported to other (Linux-based)
host platforms, as long as it provides support for Vagrant, Oracle VirtualBox, Docker and Git.

Tested configuration

For the Vagrant-based configuration, we used the following configuration:

 Configuration

Hardware 1 laptop (Core i7, 16GB RAM)

OS CentOS 7.0.1406

CoreOS github.com/coreos/coreos-vagrant
(CoreOS Alpha 550.0.0)
(Vagrant 1.6.5)
(VirtualBox 4.3.20)

Etcd Etcd v0.4.6

Fleet Fleet v0.9.0

Docker docker 1.3.2

In the following sections, the installation is described in more detail.

Prerequisites

The demonstrator is developed and tested on machines with 16 GB of internal memory and a Core i7 CPU capable of running virtual machines.
Given that this configuration uses VirtualBox to instantiate six virtual machines on a single machine, each of them requiring about 1 to 1.5 GB of
memory to operate correctly, it means that you need around 9 to 10 GB of memory minimally available on your machine to successfully runfree
this demonstrator.

For the installation of the prerequisites, a CentOS installation is used. As the prerequisites are commonly available, it should be trivial to convert7
these instructions to the distribution of your preference. For the CentOS 7 based installation, the EPEL (andExtra Packages for Enterprise Linux)
Oracle VirtualBox repositories are needed:

$ sudo yum repolist
Loaded plugins: fastestmirror, langpacks
Loading mirror speeds from cached hostfile
 * base: mirrors.supportex.net
 * epel: ftp.rediris.es
 * extras: mirror.denit.net
 * updates: mirror.yourwebhoster.eu
repo id repo name
status
!base/7/x86_64 CentOS-7 - Base
8,465
*!epel/x86_64 Extra Packages for Enterprise Linux 7 - x86_64
6,966
!extras/7/x86_64 CentOS-7 - Extras
102
!updates/7/x86_64 CentOS-7 - Updates
1,531
!virtualbox/7/x86_64 Oracle Linux / RHEL / CentOS-7 / x86_64 -
VirtualBox 4
repolist: 17,068

To install the prerequisites, you should issue:

$ sudo yum install vagrant virtualbox git

If you have already installed and used VirtualBox before, it might be that its network adapter (is not correctly configured.)vboxnet0

http://github.com/coreos/coreos-vagrant

Once this is done, we can clone the repository containing everything you need to run the actual demonstrator:demonstrator-cluster

$ git clone https://github.com/INAETICS/demonstrator-cluster.git
Cloning into 'demonstrator-cluster'...
...
$ cd demonstrator-cluster
$ export INAETICS_HOME=`pwd`
$ git submodule init && git submodule update
...
Submodule path 'docker-images/provisioning': checked out 'xyz'

Inside the repository, you find everything that is needed for the Vagrant-based setup:demonstrator-cluster

the folder contains a utility script to purge the state information of an Etcd cluster: . This is useful inbin/ purge_etcd_discovery.sh
case you need to restart the compute resources;
the folder contains the Vagrant configuration for the "bootstrap" machine. This is a Linux instance running CoreOS andbootstrap/
provides the bare infrastructure services, like an Etcd-cluster and a Docker registry. It has a predefined IPv4 address that is used by the
compute resources to obtain their state/runtime information;
the folder contain the descriptions of the various Docker images that are used in the INAETICS demonstratordocker-images/
application. These docker-images are provisioned automatically to the bootstrap machine;
the folder contains the Vagrant configuration for the compute resources, or workers. By default, this Vagrant configuration isworkers/
defined as 5 Linux instances running nothing more than CoreOS.

Starting all the virtual machines on one machine is quite memory intensive. Running this demonstrator on a machine with at least 16 GB of
memory is advised.

Starting the bootstrap VM

The bootstrap VM provides the basic infrastructure for the compute resources, such as an Etcd cluster and a Docker registry. The Etcd cluster is
used to store and share information about the state of the system between all compute resources. The Docker registry is used by the compute
resources to obtain the containerised parts of the INAETICS demonstrator application. To start the bootstrap VM, we do the following:

$ cd $INAETICS_HOME/bootstrap
$ vagrant up
Bringing machine 'cluster-bootstrap' up with 'virtualbox' provider...
==> cluster-bootstrap: Checking if box 'coreos-alpha' is up to date...
...

After a little while the bootstrap VM is up and running which can be verified by requesting the following URL:

$ curl http://172.17.8.2:5000/v1/search
{"query": "", "num_results": 0, "results": []}$

Note that it takes a little while before the Docker registry is actually started, especially if you start it the first time, so you might need to access the
URL a couple of times.

Before we can build the Docker images, which make up the actual demonstrator application, we should SSH into the bootstrap VM:

This is needed to establish proper communication between the various virtual machines that make up the cluster. In this case, you need
to remove it prior to continuing:

$ vboxmanage hostonlyif remove vboxnet0

You might also need to run this command after stopping and restarting the machines.

https://github.com/INAETICS/demonstrator-cluster

$ vagrant ssh
CoreOS alpha (584.0.0)
Update Strategy: No Reboots
core@cluster-bootstrap ~ $

Building the Docker images

The compute resources use Docker images to run the various parts of the demonstrator application. The compute resources use a single shared
Docker registry to obtain these Docker images. For building and pushing the Docker images, we have created a convenience script (docker_bui

) that simplify these steps into a single script call. All we need to do is issue the following command (note that the backslash denoteld.sh
line-continuations, and that this is a single command that needs to be invoked):

core@cluster-bootstrap ~ $ sh docker_build.sh \
 docker-images/provisioning \
 localhost:5000 \
 inaetics/provisioning
This script might need root permissions to run...
Sending build context to Docker daemon 28.43 MB
...

The node provisioning image contains a complete and preconfigured and is used for provisioning the demonstratorApache ACE server
application to both the "celix-agent" and "felix-agent" images.

As explained in the introduction, the demonstrator application are developed in both C and Java. Given that the demonstrator application is
modular and dynamically reconfigurable, this means that a small agent needs to run in order to get the provisioned software from the provisioning
server. For the Java specific parts, this agent is based on and the Docker image is created by:Apache Felix

core@cluster-bootstrap ~ $ sh docker_build.sh docker-images/felix-agent localhost:5000
inaetics/felix-agent
This script might need root permissions to run...
Sending build context to Docker daemon 1.752 MB
...

The agent that is responsible for running the C specific parts is based on and its image is created by:Apache Celix

If during the Docker build you get an error like:

FATA[0000] Error: Invalid registry endpoint "http://localhost:5000/v1/". HTTPS attempt: Get https://
: dial tcp 127.0.0.1:5000: connection refused. HTTP attempt: Get localhost:5000/v1/_ping http://local

: dial tcp 127.0.0.1:5000: connection refusedhost:5000/v1/_ping

This implies that the Docker registry is not yet up and running, and will resolve itself when waiting a little longer before invoking the
"docker_build" script again.

You can verify whether the docker registry is running by running the command:

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
0d922ed7ef6f registry:latest "docker-registry" 21 seconds ago Up 20 seconds 0.0.0.0:5000->5000/tcp
docker-registry-service

http://ace.apache.org/
http://felix.apache.org/
http://celix.apache.org/

core@cluster-bootstrap ~ $ sh docker_build.sh docker-images/celix-agent localhost:5000
inaetics/celix-agent
This script might need root permissions to run...
Sending build context to Docker daemon 34.3 kB
...

Once all Docker images are created and pushed to the registry running on the coordinator, we can verify that they exist by asking Docker:

core@cluster-bootstrap ~ $ docker images
REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE
localhost:5000/inaetics/celix-agent latest e4493375d41e 2
minutes ago 659 MB
localhost:5000/inaetics/felix-agent latest 7caa0c9a2a1d 6
minutes ago 398.2 MB
localhost:5000/inaetics/provisioning latest ca455bf3140d 8
minutes ago 424.8 MB
registry latest c55308716b36 3 weeks
ago 418.6 MB
ubuntu 14.04 5ba9dab47459 3 weeks
ago 192.7 MB

If all Docker images are present, we can close the SSH session to our coordinator VM:

core@cluster-bootstrap ~ $ exit
Connection to 127.0.0.1 closed.

Starting the compute resources

The compute resources (workers) are plain CoreOS Linux distributions that are provisioned with a number of scripts for convenience of this
demonstrator. By default there are compute resources started, which can be controlled by the variable in the five $num_instances workers/V

. Note that if you lower the number of instances, the demonstrator scenarios might not work correctly! To start the computeagrantfile
resources we issue:

$ cd $INAETICS_HOME/workers
$ vagrant up
Vagrant configured for 5 inaetics workers
...

You might need to wait a while before all workers are up and running. It can take 5 to 10 minutes to get all workers correctly up and
running depending on the speed of your host machine!

Once all five workers are booted and ready, we can SSH into the compute resource (it could be any compute resource) to verify it is correctlyfirst
up and running and has the correct IPv4 address:

$ vagrant ssh worker-1
Vagrant configured for 5 inaetics workers
CoreOS alpha (584.0.0)
Update Strategy: No Reboots
core@worker-1 ~ $ ifconfig eth1
eth1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 172.17.8.101 netmask 255.255.255.0 broadcast 172.17.8.255
...

If the worker is verified to work, we can terminate our SSH connection by and proceed with running the actual INAETICS demonstrator
application:

core@worker-1 ~ $ exit

The INAETICS demonstrator
As described in the overview section, the demonstrator application consists of several parts that together form a distributed application that is
running on the compute resources. To distribute the various parts across the compute resources is used. Fleet uses annotated Fleet systemd unit

 and transports and invokes this unit file on a designated machine. Besides stopping and starting an application, Fleet also does minimalfiles
health-checks and restarts an application if it detects that it is no longer running.

For convenience of this demonstrator, we have created a wrapper script called that does all the heavy-lifting withinaetics_fleet_manager
Fleet for us and is already installed on all the compute resources.

The initial state of the INAETICS demonstrator application consists of the following components:

one provisioning server, which is used to provision the correct software to the various agents;
2 Celix agents, for running the C-based parts of the demonstrator;
2 Felix agents, for running the Java-based parts of the demonstrator.

Starting the demonstrator application

To start the INAETICS demonstrator application, we need to SSH into the first compute resource and invoke the scinaetics_fleet_manager
ript like:

$ cd $INAETICS_HOME/workers && vagrant ssh worker-1
...
core@worker-1 ~ $ inaetics_fleet_manager --start
Inaetics Environment starting with 2 Celix agents and 2 Felix agents
Triggered unit provisioning.service start
Triggered unit felix@1.service start
Triggered unit felix@2.service start
Triggered unit celix@1.service start
Triggered unit celix@2.service start

Fleet will distribute the various unit files across our compute resources and start them for us. We can check on the progress by:

It can happen sometimes that the compute resources aren't assigned the right IPv4 address, which causes the demonstrator
application to fail. If the IPv4 address is , this means that the VirtualBox image is not correctly configured bynot 172.17.8.101
Vagrant and we need to stop and start the compute resources again (using). You might also needvagrant halt && vagrant up
to remove the VirtualBox network interface as described above.

https://coreos.com/using-coreos/clustering/
http://www.freedesktop.org/software/systemd/man/systemd.unit.html
http://www.freedesktop.org/software/systemd/man/systemd.unit.html

core@worker-1 ~ $ inaetics_fleet_manager --status
Available machines:
MACHINE IP METADATA
081e2194... 172.17.8.102 -
8e4c3d7b... 172.17.8.103 -
bd850c1a... 172.17.8.104 -
d191fbc3... 172.17.8.101 -
dc730136... 172.17.8.105 -

Submitted unit files:
UNIT HASH DSTATE STATE TARGET
celix@.service 401685f inactive inactive -
celix@1.service 401685f launched launched d191fbc3.../172.17.8.101
celix@2.service 401685f launched launched dc730136.../172.17.8.105
felix@.service b53dfab inactive inactive -
felix@1.service b53dfab launched launched 8e4c3d7b.../172.17.8.103
felix@2.service b53dfab launched launched bd850c1a.../172.17.8.104
provisioning.service 237b701 launched launched 081e2194.../172.17.8.102

Deployed units:
UNIT MACHINE ACTIVE SUB
celix@1.service d191fbc3.../172.17.8.101 active running
celix@2.service dc730136.../172.17.8.105 active running
felix@1.service 8e4c3d7b.../172.17.8.103 active running
felix@2.service bd850c1a.../172.17.8.104 active running
provisioning.service 081e2194.../172.17.8.102 active running

Note that although the status reports all deployed units as "running", it takes a little while before all software is actually provisioned to the agents!

To get a little more insight into the state of the various parts of the demonstrator application, a simple web-based viewer is provisioned to the
machine running the " " unit, which is in the example above. To access it, point your webbrowser to felix@1.service 172.17.8.103 http://172

 which should provide you a number of graphs as shown in the following figure:.17.8.103:8080/,

In this figure, we see that our queue has a steadily growing utilisation, which implies that the processors cannot keep up with the amount of data

http://172.17.8.103:8080/,
http://172.17.8.103:8080/,

produced by the producers.

Scaling out the demonstrator

To lower the queue utilisation, we simply can add more processors. We do this by adding another Celix and Felix agent:

core@worker-1 ~ $ inaetics_fleet_manager --start --celixAgents=3 --felixAgents=3
Inaetics Environment starting with 3 Celix agents and 3 Felix agents
Triggered unit felix@3.service start
Triggered unit celix@3.service start

After a while, the additional processors are started and will cause the queue utilisation to decrease as can be seen in the following figure:

Besides scaling out, we can also scale back again, by issuing the following command:

core@worker-1 ~ $ inaetics_fleet_manager --start --celixAgents=2 --felixAgents=2
Inaetics Environment starting with 2 Celix agents and 2 Felix agents
Triggered unit felix@3.service stop
Triggered unit felix@3.service unload
Triggered unit celix@3.service stop
Triggered unit celix@3.service unload

The result of this will be that the demonstrator consists again of a single producer and consumer and a queue that has an increasing utilisation.

Handling fail-over and dynamic reconfiguration

To simulate a fail-over scenario, we need to "pull the plug" on one of the agents. Suppose " " terminates representing thefelix@2.service
queue service, this causes both the producers and processors to stop functioning. Fortunately, Fleet ensures that this service is restarted after
sudden termination causing the demonstrator to function properly again. To simulate the termination of the , we SSH into thefelix@2.service
compute resource on which it runs and kill the Docker container in which the Felix agent runs. By looking at the status report of the inaetics_fl

 script above, we see that it is scheduled on the compute resource with IP address , which corresponds to the eet_manager 172.17.8.104 four
 worker (the first worker is configured to , the second to , and so on):th 172.17.8.101 172.17.8.102

$ vagrant ssh worker-4
...
core@worker-4 ~ $ docker ps
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES
e51592a110b4 172.17.8.2:5000/inaetics/felix-agent:latest "/tmp/node-agent.sh 23
minutes ago Up 23 minutes [...] felix-2

To terminate the Docker container:

core@worker-4 ~ $ docker kill e51592a110b4
e51592a110b4

If you watch the viewer page closely, you see the following situation appear:

There is no queue present anymore, and the producer is not able to place its data onto the queue. The processor shows an average throughput
which explains why its throughput is not dropped to zero. After a little while, the queue should be restarted on the same node (note the different
container ID!):

core@worker-4 ~ $ docker ps
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES
be5b58268496 172.17.8.2:5000/inaetics/felix-agent:latest "/tmp/node-agent.sh
16 seconds ago Up 15 seconds [...] felix-2

And the viewer will represent this accordingly:

You see that the producer is able to push its data onto the (new) queue and that the queue utilisation starts to grow again.

A more fatal situation can be simulated by halting a compute resource's VM. To terminate the second compute resource (running a Celix
processor) we issue:

$ vagrant halt worker-2

The result of this is that Fleet now has to reschedule the failing processor on to another compute resource, to compensate for the loss of the
second worker. After a while, the situation should be restored, and we can see that the processor is restarted on another computing resource by
running the script on the first compute resource again (note the missing compute resource with IPv4 address inaetics_fleet_manager 172.

):17.8.102

1.

core@worker-1 ~ $ inaetics_fleet_manager --status
Available machines:
MACHINE IP METADATA
04be238e... 172.17.8.101 -
5ed2251e... 172.17.8.105 -
a5097953... 172.17.8.104 -
be956748... 172.17.8.103 -

Submitted unit files:
UNIT HASH DSTATE STATE TARGET
celix@.service 401685f inactive inactive -
celix@1.service 401685f launched launched be956748.../172.17.8.103
celix@2.service 401685f launched launched 04be238e.../172.17.8.101
celix@3.service 401685f inactive inactive -
felix@.service b53dfab inactive inactive -
felix@1.service b53dfab launched launched 5ed2251e.../172.17.8.105
felix@2.service b53dfab launched launched a5097953.../172.17.8.104
felix@3.service b53dfab inactive inactive -
provisioning.service 237b701 launched launched 04be238e.../172.17.8.101

Deployed units:
UNIT MACHINE ACTIVE SUB
celix@1.service be956748.../172.17.8.103 active running
celix@2.service 04be238e.../172.17.8.101 active running
felix@1.service 5ed2251e.../172.17.8.105 active running
felix@2.service a5097953.../172.17.8.104 active running
provisioning.service 04be238e.../172.17.8.101 active running

This concludes our last demonstrator scenario. You can play with the script to start more or fewer agents. Byinaetics_fleet_manager
default, you can start up to 4 Celix and Felix agents, but if you start more compute resources than the default of five, then you can add even more
agents. If you want to see more details of the various parts of the INAETICS application, you can also take a look at the Apache ACE server. For
this, you need to find the node on which the is running (in our example) and access its web UI byprovisioning.service 172.17.8.101
pointing your web browser to: You are presented with a login dialog, for which you can use the following.http://172.17.8.101:8080/
credentials:

user name d

password f

You can play around with assigning various features to different targets. Note that it is at the moment not possible to associate Felix features to
Celix agents and the other way around.
For more information on how to work with Apache ACE, see its . users guide

Known issues
This demonstrator is created to demonstrate the scalability and resilience of an INAETICS system. It is not meant for production purposes and as
such has a couple of issues outlined in the following list:

the compute resources or workers are expected to run continuously. In case they are stopped (for example, using), thenvagrant halt
the information stored in Etcd is no longer correct and needs to be purged to restarting the compute resources. For this, a simpleprior
script is available in the bin directory of the repository, which should be invoked as:demonstrator-cluster

$ sh bin/purge_etcd_discovery.sh http://172.17.8.2:4001 inaetics-cluster-1
Cleaning discovered nodes for http://172.17.8.2:4001 from inaetics-cluster-1...
...
Deleting '_state'...

http://172.17.8.101:8080/.
http://ace.apache.org/docs/user-guide.html

1.

2.
after this script is invoked, you can start the compute resources again;
sometimes, the scaling out and failover scenarios take a long time before the system is in a steady state again. It will reach this situation,
but can take up to a couple of minutes.

Additional debug tips and tools can be found in the README file of the repository.demonstrator-cluster

Summary
In this demonstrator, we have shown how an evolvable polyglot application can be run as a distributed application on top of a cluster. We have
described how to scale out in case of overloads by using Fleet to start new agents, how fail-over of failing parts is handled automatically and how
dynamic reconfiguration of agents can be performed.

	Installation and setup guide

