
1.

2.
3.

Installation and setup guide of 1.1 demonstrator

version 2.0, last modified: 2015-09-23

This document explains how to set up the INAETICS demonstrator. For this, we use a Vagrant-based setup that boots a cluster of up to six nodes
on a single machine, we show how you can create evolvable systems using Kubernetes, Docker and OSGi. This document is structured as
follows: first some background information about the demonstrator application itself is given after which the preparations and startup of the cluster
is described. In the last section, the demonstration scenarios are described showing the dynamic aspects of the demonstrator application. In the
appendix Under the Hood additional technical information is presented

Demonstrator overview
Vagrant-based installation

Tested configuration
Prerequisites
Starting the Kubernetes Master VM

Starting the Cluster resources
The INAETICS demonstrator

Starting the demonstrator application
Scaling out the demonstrator
Handling fail-over and dynamic reconfiguration
Known Issues

discovery fails with old etcd state
Summary
Appendix Under the Hood

Software provisioning
Networking
Container Monitoring
Discovery
Logging

Demonstrator overview
An INAETICS system is about creating systems that can evolve in and over time. To demonstrate the scalability aspects of an INAETICS system,
this demonstrator provides a sample application as denoted in the following figure:

At the utmost left, we have a number of data , which publish data onto a shared . Assuming the data needs a bit of processing,producers queue
one or more picks up the data from the queue, processes it and stores the result in a single . Users can use the data fromprocessors data store
this store for reporting purposes. The statistics of each element are available from a webpage, further the browser can be used to instrument the
number of processors in the demonstrator and to instrument the sample rate of the producers. With these aspects of our application, we can
demonstrate the following scenarios which affect the equilibrium of the system:

if the producers publish data than the processors can handle, in which case the queue-size will grow. In this case, we need tomore scale
 by adding more processors;out

suppose a processor fails and stops functioning, we need to handle to another processor;fail-over
in case hardware resources fail, we can dynamically reconfigure the parts across different resources.

In an INAETICS system is a coordinator that tries to map application requirements on available resources., hereby the health of the system is
monitored to decide if a re-mapping is required. This part is still under development. To be able to demonstrate the coordination concept an
auto-scaler is added to the demonstrator. This auto-scaler scales the number of processors up and down dependent on the QOS of the queue. In
this case, the QOS is defined as the fill rate of the queue.

The various parts of the application are written in both C and Java that together form a distributed application that shows the ability of how a

polyglot environment can scale and handle fail-over scenarios. Each part is deployed onto one or more computing resources (virtualised Linux
environments) using Apache ACE as provisioning solution and uses Kubernetes for the (minimalistic) scheduling and monitoring.

In the following section, the preparations and installations of the prerequisites are explained in more detail.

Vagrant-based installation
In this section, the installation of the INAETICS demonstrator is described using Vagrant. You can use it to install the INAETICS demonstrator on
a single machine. This section uses CentOS-7 as host platform. Nevertheless, the installation can rather easily be ported to other (Linux-based)
host platforms, as long as it provides support for Vagrant, Oracle VirtualBox, Docker and Git.

Tested configuration

For the Vagrant-based configuration, we used the following configuration:

 Supported Configurations

Hardware 1 laptop (Core i7, 16GB RAM) 1 laptop (Core i7, 16GB RAM) laptop (Core i7, 8 GB RAM)

OS OSX 10.10 CentOS 7.0.1406 Fedora 22

CoreOS github.com/coreos/coreos-vagrant
(CoreOS Alpha 815.0.0)
(Vagrant 1.7.2)
(VirtualBox 4.3.26r98988)

github.com/coreos/coreos-vagrant
(CoreOS Alpha 815.0.0)
(Vagrant 1.6.5)
(VirtualBox 4.3.20)

github.com/coreos/coreos-vagrant
(CoreOS Alpha 815.0.0)
(Vagrant 1.7.4)
(VirtualBox 5.0.6)

Etcd Etcd v2.0 Etcd v2.0 Etcd v2.0

Fleet Fleet v0.9.0 Fleet v0.9.0 Fleet v0.9.0

Docker docker 1.7.1 docker 1.7.1 docker 1.8.2

In the following sections, the installation is described in more detail.

Prerequisites

The demonstrator is developed and tested on machines with 16 GB of internal memory and a Core i7 CPU capable of running virtual machines.
Given that this configuration uses VirtualBox to instantiate six virtual machines on a single machine, each of them requiring about 1 to 1.5 GB of
memory to operate correctly, it means that you need around 9 to 10 GB of memory minimally available on your machine to successfully runfree
this demonstrator.

For the installation of the prerequisites, a CentOS installation is used. As the prerequisites are commonly available, it should be trivial to convert7
these instructions to the distribution of your preference.

Note: For the CentOS 7 based installation, the EPEL (and Oracle VirtualBox repositories are needed:Extra Packages for Enterprise Linux)

http://github.com/coreos/coreos-vagrant
http://github.com/coreos/coreos-vagrant
http://github.com/coreos/coreos-vagrant

$ sudo yum repolist
Loaded plugins: fastestmirror, langpacks
Loading mirror speeds from cached hostfile
 * base: mirrors.supportex.net
 * epel: ftp.rediris.es
 * extras: mirror.denit.net
 * updates: mirror.yourwebhoster.eu
repo id repo name
status
!base/7/x86_64 CentOS-7 - Base
8,465
*!epel/x86_64 Extra Packages for Enterprise Linux 7 - x86_64
6,966
!extras/7/x86_64 CentOS-7 - Extras
102
!updates/7/x86_64 CentOS-7 - Updates
1,531
!virtualbox/7/x86_64 Oracle Linux / RHEL / CentOS-7 / x86_64 -
VirtualBox 4
repolist: 17,068

To install the prerequisites, you should issue:

$ sudo yum install vagrant virtualbox git

Note: On Fedora22 the packages for virtualbox and vagrant need to be installed manually (sudo dnf install <URL>)

Once this is done, we can clone the repository containing everything you need to run the actual demonstrator:kubernetes-demo-cluster

$ git clone --branch v1.1.0 https://github.com/INAETICS/kubernetes-demo-cluster.git
Cloning into 'demonstrator-cluster'...
...
$ cd kubernetes-demo-cluster
$ export INAETICS_HOME=`pwd`
$ git submodule init && git submodule update
...
Submodule path 'docker-images/provisioning': checked out 'xyz'

Inside the kubernetes-demo-cluster repository, you find everything that is needed for the Vagrant-based setup:

Controller, virtual machine that runs the Kubernetes master
Cluster, virtual machines that run the cluster machines

To prevent that all virtual machines download needed packages when started, this needs to be done manually. Kubernetes needs a few docker
images: flannel and pause. These are only available from insecure docker registries. For that reason, the docker configuration file (normally
/etc/sysconfig/docker) needs to specify these insecure registries.

Edit /etc/sysconfig/docker:
Add the following option: OPTIONS=-D --insecure-registry quay.io --insecure-registry
grc.io

https://github.com/INAETICS/kubernetes-demo-cluster

Note: for docker 1.8.2 the above was not needed, instead the executing user needs to be added to the docker group

The actual downloads are scripted:

$ cd Controller
$ sh bin/initial_download.sh

Starting all the virtual machines on one machine is quite memory intensive. Running this demonstrator on a machine with at least 16 GB of
memory is advised.

Starting the Kubernetes Master VM

The Kubernetes Master VM provides the basic infrastructure for the compute resources, such as an Etcd Leader, fleet units to bootstrap
Kubernetes and the Kubernetes controller. The Etcd cluster is used to store and share information about the state of the system between all
compute resources. On each node, docker loads the needed docker images into its local cache. This prevents problems with an overload of a
single docker registry in the virtual setup. To start the Kubernetes Master VM, we do the following:

$ cd $INAETICS_HOME/Controller
$ vagrant up
Bringing machine 'Controller' up with 'virtualbox' provider...
==> Controller: Checking if box 'coreos-alpha' is up to date...
...

After a little while the Kubernetes Master VM is up and running which can be verifying the following URL (the port number is of the Kubernetes
API server):

$ curl http://172.17.8.20:10260/api
{
 "versions": [
 "v1"
]
}$

Starting the Cluster resources
The compute resources (workers) are plain CoreOS Linux distributions that are provisioned with a number of scripts for convenience of this
demonstrator. By default there are compute resources started, which can be controlled by the variable in the five $num_instances workers/V

. Note that if you lower the number of instances, the demonstrator scenarios might not work correctly! To start the computeagrantfile
resources we issue:

$ cd $INAETICS_HOME/Cluster
$ vagrant up
Bringing machine 'node-1' up with 'virtualbox' provider
...

You might need to wait a while before all workers are up and running. It can take 5 to 10 minutes to get all workers correctly up and
running depending on the speed of your host machine!

Once all five workers are booted and ready, we have the demonstrator up and running.

It can happen sometimes that the compute resources aren't assigned the right IPv4 address, which causes the demonstrator application to fail. If
the IPv4 address of the Kubernetes Master VM is , this means that the VirtualBox image is not correctly configured by Vagrantnot 172.17.8.20

and we need to stop and start the compute resources again (using). You might also need to remove thevagrant halt && vagrant up
VirtualBox network interface.

The INAETICS demonstrator
As described in the overview section, the demonstrator application consists of several parts that together form a distributed application that is
running on the compute resources. To distribute the various parts across the compute resources Kubernetes is used. Kubernetes has the concept
of a master node were a scheduler, controller and apiserver are running. On the cluster nodes a Kubernetes machine manager (kubelet) and a
proxy is running. Kubernetes uses JSON formatted files to instrument the scheduler. The JSON files describe the grouping of docker containers in
so-called PODs. These PODs can be replicated with a replication controller. Also the services offered by a POD can be proxied on to the master
node.
The Kubernetes controller determines what PODS and services shall be started in the cluster. The Kubernetes scheduler checks the resources
that are available in the cluster and determines where each POD is running. The Kubelet finally starts the POD.

The initial state of the INAETICS demonstrator application consists of the following components:

one provisioning server, which is used to provision the correct software to the various agents;
a single producer (Felix agent) which is instrumented to run at 5% of its maximum sample rate
a single queue (Felix agent)
a single datastore which also runs the coordinator and the webserver (Felix agent)
a dynamic number of processors (the coordinator alternately starts a Felix agent or a Celix agent)

Starting the demonstrator application

The demonstrator is automatically started by Kubernetes. The viewer can be accessed using a web browser at address 172.17.8.20. The main
page of the demonstrator is shown below

The "all statistics" subpage of the main page is mainly for developing. It shows the statistics (number of samples) of each component running in
the system.

Most interesting from a user point of view is the dashboard. It provides overview and control options

Scaling out the demonstrator
The number of samples that all producers generate can be adapted with a slider as percentage. At maximum, the number of samples per
producer is approximately 400 per producer (depends on the load of the system you are running on). Also the number of producers can be
increased or declined to handle change in environment.

The result of these actions will be a grow or decrease of the fill level of the queue. The coordinator running in the system uses the change in fill
level during a period of ten seconds as application health metric and adds or removes processors in the system. In the shown dashboard the
number of processors is shown as 2 / 3. This indicates that at the moment 2 processors are active in the system and that the coordinator has
requested a third processor.

Handling fail-over and dynamic reconfiguration
To simulate a fail-over scenario, we need to "pull the plug" on one of the agents. Suppose we terminate the agent running the queue service, this
causes both the producers and processors to stop functioning. Fortunately, Kubernetes ensures that this service is restarted after sudden
termination causing the demonstrator to function properly again. To simulate the termination of the queue service, we SSH into the Controller.

$ cd $INAETICS_HOME/Controller
$ vagrant ssh

In the Controller the Kubernetes scheduler and api-server are running. To access Kubernetes a client application kubectl is used. It expects an
environment variable with the address of the kubernetes master. The "get pods -o wide" arguments shows the Kubernetes PODS that are running
on which node.

To terminate the Docker container ssh into the cluster node (node-1 is 172.17.8.31, node-2 is 172.17.8.32 etc.) and use the docker
command-line to determine the container id of the queue container.

On the dashboard you can notice that no new statistics information of the queue is retrieved. It takes some time for Kubernetes to detect the
missing POD, next the agent needs to register itself in the Cluster again and the provisioning server needs to re-install software on it.

Ater some time the statistics and queue are running as before. You see that the producer is able to push its data onto the (new) queue and that
the queue utilisation starts to grow again.

A more fatal situation can be simulated by halting a compute resource's VM. To terminate the second compute resource (running a Celix
processor) we issue:

$ vagrant halt node-4

The result of this is that Kubernetes now has to reschedule the failing processor on to another compute resource, to compensate for the loss of
the second worker. After a while, the situation should be restored, and we can see that the processor is restarted on another computing resource
by running the :kubectl get pods command.

This concludes our last demonstrator scenario.

Known Issues
vboxnet0 interface not removed
If you have already installed and used VirtualBox before, it might be that its network adapter (is not correctly configured. This)vboxnet0
is needed to establish proper communication between the various virtual machines that make up the cluster. In this case, you need to
remove it prior to continuing:

discovery fails with old etcd state

$ vboxmanage hostonlyif remove vboxnet0

You might also need to run this command after stopping and restarting the machines.

vagrant up fails
On Fedora22 sometimes libvirt is chosen as default provider, not clear yet why.

Summary
In this demonstrator, we have shown how an evolvable polyglot application can be run as a distributed application on top of a cluster. We have
described how to scale out in case of overloads, how fail-over of failing parts is handled automatically and how dynamic reconfiguration of agents
is performed.

Appendix Under the Hood
For those interested in the technical details we will present some additional information.

Software provisioning

An interesting part is the software provisioning server Apache ACE. It contains information on the OSGi software bundles present in the system
and how these have to be mapped on the available computing resources. For this, you can access the viewer of Apache ACE at the following
URL:

172.17.8.20:90 (a Kubernetes service is running that proxies port 8080 of the ACE server on port 90 of the Kubernetes master). You are
presented with a login dialog, for which you can use the following credentials:

user name d

password f

The used distributed key/value store ETCD maintains a snapshot of its state on disk. When a machine is halted with the
command "vagrant halt" this state will be stored in the virtual machine state. At the next start-up this information will be
restored, but this causes our discovery mechanisms to fail. Therefore, we always use

$ vagrant halt
$ vagrant destroy

Add the following environment variable to ~/.bashrc

export VAGRANT_DEFAULT_PROVIDER=virtualbox

You can play around with assigning various features to different targets. Note that it is at the moment not possible to associate Felix features to
Celix agents and the other way around. The available bundles and the default mapping are mounted in the node provisioning agent. These are
available at $INAETICS_HOME/Controller/inaetics_demo/node-provisioning/bundles.

For more information on how to work with Apache ACE, see its . users guide

Networking

A very good overview of the networking problems with cluster environments is given by: Kubernetes Networking Model

In the demonstrator we selected Flannel, an overlay network, as solution for "one IP per POD". See As protocol to transportIntroducing Flannel
the overlay packets a VXLAN backend is used, see FLANNEL Readme

Container Monitoring

Kubernetes uses cAdvisor under the hood to obtain statistics of the running docker containers. It is only available for the Cluster nodes. You can
check the available information at URL: 172.17.8.31:4194

http://ace.apache.org/docs/user-guide.html
https://github.com/kubernetes/kubernetes/blob/master/docs/design/networking.md
https://coreos.com/blog/introducing-rudder/
https://github.com/coreos/flannel/blob/master/README.md

Discovery

For the different discovery mechanisms needed in the demonstrator the distributed key-value store ETCD is used. It is part of CoreOS. So see the
discovery information present check the following URL 172.17.8.20:2379/v2/keys/inaetics

Logging

Logging of Celix containers is possible with the "docker logs <container_id>" command, e.g. for a Celix processor

For Felix agents besides the docker logs command, additional information can be retrieved using the following commands

$ cd $INAETICS_HOME/Controller
$ vagrant ssh
core@controller ~ $export `cat /etc/kubernetes.env`
core@controller ~ $kubectl get pods -o json <name>
Check the output and determine the podIP <POD IP> where the POD is running
core@controller ~ ncat --telnet <POD IP> 2019

Welcome to the Apache Felix Gogo
g! log debug
log 1

	Installation and setup guide of 1.1 demonstrator

